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Abstract
Armillaria species show considerable variation in ecological roles and virulence, from mycorrhizae and saprophytes to 
important root pathogens of trees and horticultural crops. We studied two Armillaria species that can be found in coniferous 
forests of northwestern USA and southwestern Canada. Armillaria altimontana not only is considered as a weak, opportun-
istic pathogen of coniferous trees, but it also appears to exhibit in situ biological control against A. solidipes, formerly North 
American A. ostoyae, which is considered a virulent pathogen of coniferous trees. Here, we describe their genome assemblies 
and present a functional annotation of the predicted genes and proteins for the two Armillaria species that exhibit contrasting 
ecological roles. In addition, the soil microbial communities were examined in association with the two Armillaria species 
within a 45-year-old plantation of western white pine (Pinus monticola) in northern Idaho, USA, where A. altimontana was 
associated with improved tree growth and survival, while A. solidipes was associated with reduced growth and survival. The 
results from this study reveal a high similarity between the genomes of the beneficial/non-pathogenic A. altimontana and 
pathogenic A. solidipes; however, many relatively small differences in gene content were identified that could contribute to 
differences in ecological lifestyles and interactions with woody hosts and soil microbial communities.

Keywords Armillaria root disease · Tree health · Genomes · Pathogenic · Beneficial fungi · Dysbiosis

Introduction

In recent decades, the genetics of fungal pathogenicity and 
symbioses have been studied in concert to identify potential 
patterns related to these divergent ecological roles. Genomic 
comparisons among pathogenic and symbiotic fungi have 
highlighted great diversity in gene content, genome size, 
repeat content, and number of chromosomes among fungi 
with distinct ecological roles (e.g., [1, 2]).

Within the Agaricales of basidiomycota, 13,000 spe-
cies have been described and ecological roles and lifestyles 
among these range from saprophytes to pathogens to ecto-
mycorrhizal symbionts [3]. Evolutionary studies suggest 
that ectomycorrhizal lifestyle likely arose from saprophytic 
fungi [4]. Historically, ectomycorrhizal (ECM) fungi were 
thought to have reduced numbers of genes encoding plant 
cell wall–degrading enzymes (PCWDEs), including carbo-
hydrate degrading enzymes. Recent literature has suggested 
that ECM fungi contain diverse repertoires of these genes 
encoding PCWDEs [5]. ECM fungi typically retain the dis-
tinct suites of PCWDEs and carbohydrate-active enzymes 
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(CAZymes) of their saprotrophic ancestors; some, like the 
fungal CAZymes acting on pectin (GH28, GH88, and CE8), 
are expressed in ECM fungi on ectomycorrhizal root tips [5]. 
Furthermore, little evidence suggests that common gene rep-
ertoires exist among ECM fungi [1]. The genome of Lacca-
ria bicolor, a well-described ECM fungus, contained twice 
as many secreted CAZymes (glycoside-hydrolases (GH), 
polysaccharide lyases (PL), and carbohydrate esterases (C)) 
than polysaccharide biosynthetic and modifying enzymes 
[6]; however, this pattern was also observed in the forest 
root pathogen, Heterobasidion annosum [7, 8]. Similarly, 
both mutualistic and parasitic species of Agaricomycotina 
typically have an abundance of transposable elements [9]. 
Thus, differences in genomic content of Agaricales fungi 
with divergent ecological roles (e.g., saprophytes, patho-
gens, mycorrhizal symbionts, biological control agents) are 
difficult to detect.

The genus Armillaria (Basidiomycota, Agaricales) 
includes species that have diverse ecological roles within 
their respective environments. Several species are impor-
tant plant pathogens of trees/woody plants, while several 
species are symbionts or even hosts of other organisms 
[10–12]. Armillaria species are also important decomposers 
in the forests where they occur, especially because they can 
degrade lignin [11]. Among Armillaria species, A. solidipes 
(formerly North American A. ostoyae) is considered one of 
the more virulent pathogens [13], although virulence var-
ies depending on isolate, host age, and other factors [14]. 
Armillaria mellea and A. borealis are also considered viru-
lent pathogens, while A. gallica, A. cepistipes, A. gemina, A. 
calvescens, A. sinapina, and A. nabsnona are considered less 
virulent or secondary pathogens [10, 12, 15, 16]. A recently 
described species, A. altimontana, formerly North American 
biological species (NABS) X, is also usually considered as 
a weak pathogen [17], but evidence for pathogenicity is not 
well documented [18].

Armillaria solidipes (as A. ostoyae) and A. altimon-
tana have been documented to co-occur within forest 
stands in the inland northwestern USA [18–20]. A previ-
ous study in northern Idaho, USA, provided evidence that 
A. altimontana can provide natural biological control of 
Armillaria root disease of western white pine (Pinus mon-
ticola) caused by A. solidipes. In this study, A. solidipes 
was uncommon in areas dominated by A. altimontana, 
and trees colonized by A. solidipes were associated with 
a lower growth and survival than trees colonized only by 
A. altimontana. The results demonstrated that A. solidipes 
and A. altimontana have two different and contrasting 
lifestyles: A. altimontana was not harmful to western 
white pine within the northern Idaho planting site and 
further suggests that A. altimontana behaves as a long-
term, in situ biological control agent against virulent A. 
solidipes [20]. However, little is known about site factors 

or differences in microbial communities that enabled A. 
altimontana to outcompete A. solidipes within specific 
areas of this site. Recognizing the genetic or underlying 
soil factors that drive host-fungal interactions may provide 
approaches for enhancing the management of Armillaria 
root disease.

The distribution, life cycle, pathogenicity, and evolution-
ary relationships have been studied for several Armillaria 
species [10, 12, 14, 16, 21–25]. Collins et al. [26] studied 
the genome and proteome of A. mellea, identifying carbohy-
drate-degrading enzymes, laccases, and lignin peroxidases 
among other gene-encoded proteins. Ross-Davis et al. [27] 
characterized the transcriptome of an A. solidipes mycelial 
fan infecting grand fir (Abies grandis), finding high expres-
sion of transcripts coding for PCWDEs, along with enzymes 
and ABC transporters that may help detoxify host-produced 
defense compounds. More recently, genomes of four Armil-
laria species (A. cepistipes, A. gallica, A. ostoyae, and A. 
solidipes) were sequenced by Sipos et al. [28]; this compara-
tive genomic study revealed a rich repertoire of PCWDEs 
and pathogenicity-related genes in these Armillaria spe-
cies regardless of their ecological lifestyles ranging from 
an aggressive pathogen to an exclusive decomposer. This 
study also identified expression of numerous pathogenicity-
related transcripts and proteins during fruiting body and rhi-
zomorph development [24, 28]. However, no studies have 
examined genomic differences between A. altimontana and 
A. solidipes, which may provide insights into genomic sig-
natures of ecological lifestyles of fungi within Agaricales.

Assessing interactions among the soil fungi with differ-
ent ecological lifestyles within the microbial communities is 
critical to understand disease development. As a well-known 
example, the association between mycorrhizal associations 
of fungi and roots allows for increased water and nutrient 
uptake that sustain tree health [29–33]. Microbes also break-
down litter and forest debris, which maintain forest health 
by improving soil quality and recycling nutrients that are 
required by plants [34–38]. In addition, pathogenic soil fungi 
function as selective agents that can cause mortality to mala-
dapted trees, increasing the vigor and relative adaptation 
of residual trees in the stand [39–41]. In contrast, highly 
virulent soil pathogens can infect healthy tree roots, result-
ing in tree mortality that ultimately degrades the health of 
forest stands [41]. Additionally, the ability to favor beneficial 
microbes that inhibit root pathogens, which are notoriously 
difficult to mitigate, may enhance current management tech-
niques [42, 43].

Soil metagenomics or metabarcoding can be used to iden-
tify important fungi, bacteria, and archaea associated with 
tree health [43]. Determinations of the soil microflora can 
allow evaluations of treatment (e.g., soil amendments, forest 
thinning, underburning) influences on naturally occurring 
microbial communities that favor or suppress forest root 
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diseases/pathogens, which could provide new approaches 
to manage Armillaria root disease [20, 44, 45].

Herein, we elucidate genomic and/or microbial soil pro-
file differences associated with two Armillaria species that 
display divergent ecological lifestyles. We first present the 
genome assembly and annotation of the potentially benefi-
cial A. altimontana isolated from northern Idaho, northwest-
ern USA, and compare it with the genome of a pathogenic 
A. solidipes isolated from the same region. In addition, we 
compare the fungal and bacterial communities in the soil 
associated with the two Armillaria species. Putative secreted 
and non-secreted proteins encoded in each of the Armil-
laria genomes and the potential relationship with associ-
ated microbial communities are described, with emphasis 
on genes related to pathogenicity and fungal/ecological life-
styles. The data presented here contribute to understanding 
the ecological function of Armillaria species at the genomic 
level and will serve as resources for understanding genetic 
and ecological functions of these and other soil fungi.

Materials and Methods

Fungal Isolates for the Genome Sequencing

Armillaria solidipes (isolate ID001 [27]) was obtained from 
a culture of a basidiospore derived from a fruiting body 
belonging to a genet that was causing disease via an active 
mycelial fan growing below the bark of a live grand fir at 
the Clearwater National Forest, ID, USA. Armillaria alti-
montana (isolate 837–10) was obtained from a basidiospore 
from a fruiting body collected from the forest soil, with no 
host tree association ca. 2 km from the same location. After 
basidiospores were dispersed onto water agar, individual 
basidiospores were identified with a dissecting microscope 
and subcultured to establish haploid, basidiospore-derived 
cultures on 3% malt agar medium (3% malt extract, 3% dex-
trose, 1% peptone, 1.5% agar) for both species.

DNA Isolation

Isolates of A. solidipes and A. altimontana were grown for 
3–4 weeks on 0.22-µm pore MF-Millipore™ Membrane 
nylon filters (MilliporeSigma, Burlington, MA) overlaying 
a membrane culture medium intended to reduce dark-colored 
exudates: 1.5% malt extract, 1.5% dextrose, 0.5% peptone, 
and 1.2% agar. The fresh mycelia (ca. 1–2 g) was scraped 
off from the nylon filter, ground by mortar and pestle with 
liquid nitrogen, and the DNA was extracted with the MoBio 
(Qiagen) DNeasy PowerMax Soil Kit (cat. no. 12988), fol-
lowing the protocol of the manufacturer.

Genome Sequencing and Assembly

PacBio sequencing and assembly of the two Armillaria 
species genomes were performed at the Laboratory for 
Biotechnology and Bioanalysis (LBB), Washington State 
University. Briefly, 10–15 µg of DNA were sheared using 
Covaris g-Tubes for 10 min at 1350 × g in a Minifuge 
16 centrifuge (Beckman Coulter). Approximately, 5 µg 
of sheared DNA was processed for Pacific Biosciences 
SMRT bell library preparation following the “Procedure 
and Checklist-20 kb Template Preparation using BluePip-
pin Size Selection System” (P/N 100–286-000–5) protocol 
(Pacific Biosciences) and the Pacific Biosciences SMRT-
bell Template Prep kit 1.0 (P/N 100–259-100). Resulting 
SMRTbell libraries were size selected using a BluePip-
pin gel purification system (Sage Biosciences) according 
to the Blue Pippin User Manual and Quick Guide. The 
0.75% agarose gel cassette was used with a cutoff limit set 
to 15–50 kb. The resulting SMRTbell library molecules 
had an average size of approximately ≥ 18 kb. Appropri-
ate concentrations for the annealing and binding of the 
SMRTbell libraries were determined using the Pacific 
Biosciences Binding and Annealing calculator. SMRT-
bell libraries were annealed and bound to the P6 DNA 
polymerase for sequencing using the DNA/Polymerase 
Binding Kit P6 v2.0 (P/N100-372–700), following the rec-
ommended protocol from Pacific Biosciences but extend-
ing the binding times to 1–3 h, compared to suggested 
30 min. The bound SMRTbell libraries were loaded onto 
the SMRT cells using the standard MagBead protocol and 
the MagBead Buffer Kit v2.0 (P/N 100–642-800). Then, 
the standard MagBead sequencing protocol was followed 
using the DNA Sequencing Kit 4.0 v2 (P/N 100–612-
400) (typically known as P6/C4 chemistry). Sequencing 
data were collected for 6-h movie times, and Stage Start 
was enabled to capture the longest single reads possible. 
Genome assemblies were performed within the Pacific 
Biosciences SMRT Portal software. HGAPII was used 
following standard defaults for genome assembly.

Genome Assembly and Evaluation

Metrics for the genome assemblies, including scaf-
folds number, total length, GC content, and N50, were 
obtained using the QUAST [46] web server. Complete-
ness of the assemblies was evaluated using BUSCO 2.0b2 
[47]. BUSCO utilizes sets of genes present as single-copy 
orthologous in a number of species within a clade. For 
the evaluation of the Armillaria genome assemblies, the 
“Fungi dataset” and the “Basidiomycota dataset” were 
used. The default e-value of 0.001 was kept for the BLAST 
searches.
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Phylogenetic Tree Analysis

Whole-genome phylogenetic tree was created using Real-
phy 1.12 [48] with Bowtie2 2.3.3.1 [49] for read mapping 
and PhyML [50] to build the tree. Preset options were used 
to run the Realphy pipeline. Whole-genome assemblies of 
Armillaria species available at the National Center for Bio-
technology Information or the Join Genome Institute web-
sites and the two genome assemblies described in this work 
were included. The number of bootstrap replicates in PhyML 
was set to 200.

Structural and Functional Genome Annotations

A set of repetitive sequences was obtained for each of the 
genome assemblies of A. solidipes and A. altimontana using 
RepeatModeler v.1.0.11 [51]. As the first step in the Maker 
v.2.31.8 pipeline [52], repetitive sequences files were used 
by RepeatMasker v.4.0.6 [53], to mask and obtain descrip-
tions of interspersed repeats and low complexity DNA 
sequences. Next, the gene predictors Augustus [54], Gene-
Mark-ES [55], and SNAP [56] were used for gene prediction 
in Maker. TRNAscan-SE [57] was also included to predict 
tRNA genes. For Augustus, a closely related species, Copri-
nus cinereus, was used as species model. SNAP was trained 
with a set of protein-encoding sequences from Armillaria 
species and closely related species, obtained from the NCBI 
and EnsemblFungi databases.

The set of proteins generated by Maker was functionally 
annotated using BLASTp v.2.9.0 + [58] and InterProScan 
v.5.20–59.0 [59]. Only proteins ≥ 50 amino acids were con-
sidered for these and further annotation analyses. For the 
BLAST search, a database was built with all entries for fungi 
in the UniProtKB database. A maximum e-value of 0.001 
was used. For the InterProScan analysis, the Pfam applica-
tion was included. Results from BLAST and InterProScan 
were added to the structural annotation in new gff3 files.

CAZymes were also annotated using the dbCAN2 server 
[60]; proteins involved in pathogenicity were searched using 
BLASTp at the PHI database version 46 [61]. Secondary 
metabolite clusters were annotated using antiSMASH server 
version 5.1.2 [62] with the detection strictness set to strict, 
including for the analyses the corresponding genome FASTA 
files of A. altimontana and A. solidipes. Deeploc 1.0, a pro-
gram that utilizes deep learning algorithms [63], was used 
to predict the set of secreted proteins.

Structural Annotation Evaluations

Completeness of the Armillaria proteomes generated by 
Maker was evaluated using BUSCO 2.0b2. The “Fungi 

dataset” and the “Basidiomycota dataset” were used as 
assessed for the genome assemblies. The default e-value of 
0.001 was also kept for the BLAST searches.

Synteny Analysis and Visualization

Analysis and graphs of synteny blocks (i.e., genomic regions 
of conserved gene content) were made using SyMAP 2.4 
[64, 65]. Genome assemblies and GFF3 files produced by 
Maker were used to obtain the synteny graphs. Default 
parameters were used to run the program, except the mini-
mum sequence size was set to 10,000 bp.

Analysis of Orthologous Protein Families

The set of predicted proteins generated by Maker for A. 
altimontana and A. solidipes were used to identify ortholo-
gous and species-exclusive (non-orthologous) groups using 
the OrthoVenn2 web server [66]. Two parameters can be 
adjusted when using the OrthoVenn2 web server: e-value 
and inflation value; they were set to 1e − 10 and 2, respec-
tively. These values were chosen to slightly increase the 
detection of more non-orthologous proteins compared to 
the default values (1e − 2 and 1.5, respectively).

Study Area and Field Sampling for Soil Microbial 
Analysis

The study area was located in northern Idaho at the USDA 
Forest Service, Priest River Experimental Forest (Fig. 1). 
The field site was a historic western white pine seed prove-
nance plot within the Ida Creek study area (ca. 48°21ʹ48.75ʺ 
N and 116°49ʹ25.36ʺ W, elevation ca. 770 m.a.s.l.). In 1971, 
2372 seedlings from Idaho and Washington were planted in 
a common garden plantation [20]. In 1987, all 2076 remain-
ing trees were sampled for diameter at breast height (DBH), 
height, tree health status, and association with A. solidipes 
and A. altimontana, as described by Warwell et al. [20].

In 2016, 60 trees were randomly selected for sampling, 
based on the historical plot distributions of A. solidipes and 
A. altimontana. Three additional trees (ca. 63) were sam-
pled with needle discoloration and the formation of mycelial 
fans on the base of the trunk, indicating the presence of A. 
solidipes. Tree measurements included DBH and tree health 
status, which was based on total crown, foliage color, insect 
and disease presence, and dead/live status.

For soil sampling, 1 m from the main stem of a tree near 
root zones, depths of duff and litter were measured at each 
cardinal direction in a 30-cm-diameter circle. The area was 
then cleared, and bulk soil samples were taken for each of 
the 63 trees using a 15-cm, split soil corer with a 15.9-mm 
(5/8 inch), compact slide hammer (AMS, #400.99, Ameri-
can Falls, ID). Samples were homogenized, 2 g were placed 
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in a 15-ml tube with 5 ml of LifeGuard RNA preservation 
solution (Qiagen®, Carlsbad, CA), and samples were placed 
on ice for preservation until storage. Samples were stored 
at − 80 °C prior to DNA extractions. Remaining bulk soils 
from each tree were sent to the USDA Forest Service, Rocky 
Mountain Research Station, Soils Laboratory in Moscow, 
ID, for soil characteristics measurements and chemistry 
calculations.

Armillaria rhizomorphs adjacent to the roots were also 
excavated using a small Pulaski-like gardening tool and 
brushes. Primary rhizomorph collections occurred on the 
same side as the soil core while an additional sample was 
collected 180° on the opposite side of the tree from the core. 
Rhizomorphs were placed in 15-ml tubes and placed on ice 
or 4 °C until isolation and culture.

Armillaria Isolation, DNA Extractions, and PCR

Rhizomorphs were plated for fungal isolation within 7 days 
of collection. Each rhizomorph was surface sterilized by 
an initial rinse with sterile-distilled water to remove the 
attached soil particles, followed by a soak in 20% Clorox® 
bleach solution (1.5% sodium hypochlorite, final concentra-
tion) for 6–10 min, a rinse with sterile-distilled water, and 
a soak in 3% hydrogen peroxide for 6–10 min. After a final 
rinse with sterile-distilled water, small rhizomorph sections 
(ca. 1-cm length) were plated onto 3% malt agar medium and 
incubated at 22 °C in the dark to promote mycelial growth 
of Armillaria.

For DNA extractions from Armillaria cultures, myce-
lia were sub-cultured onto Millipore™ membrane nylon 
filters that overlaid on membrane culture medium. After 
2–3 weeks, mycelia were scraped off the nylon filters, and 
DNA was extracted from > 50 mg of mycelia using Zymo 
Fungal/Bacterial DNA extraction kits (Irvine, CA), fol-
lowing manufacturer protocols with a few modifications. 
To maximize DNA quantity and quality, three 3-mm glass 

beads were added to the cell lysis step prior to homogeniza-
tion (Thermo Savant FastPrep ® FP120 Cell Homogenizer; 
Qbiogene, Carlsbad, CA) at 6.0 speed with two 30-s cycles. 
DNA concentration and quality were quantified using a Nan-
oDrop™ 2000 spectrophotometer (Thermo Fisher Scientific, 
Wilmington, DE).

For species identification, DNA was amplified at the 
translation elongation factor-1α (tef1) locus using primers 
EF-983 and EF-2218 [67] with an Eppendorf Mastercycler 
pro Thermal Cycler (Eppendorf, Hamburg, Germany). The 
PCR cycle was 94 °C for 2.5 min, 30 cycles of 94 °C for 
30 s, 60 °C for 30 s, and 72 °C for 1.5 min, with a final 
cycle at 72 °C for 10 min. PCR products were visualized 
using gel electrophoresis, cleaned with ExoSAP-IT™ PCR 
Product Cleanup Reagent (Thermo Fisher Scientific, Santa 
Clara, CA), and then Sanger sequenced in two directions 
by Eurofins Genomics (Louisville, KY). Sequences were 
edited and aligned in Geneious R11.1 (https:// www. genei 
ous. com). Aligned sequences were identified by comparing 
to the NCBI (National Center for Biotechnology Informa-
tion) database using BLASTn (https:// blast. ncbi. nlm. nih. 
gov/ Blast. cgi) [58].

Soil DNA Extraction Protocol and Sequencing

DNA was extracted from the soil samples preserved in Life-
Guard™ Preservation Solution using MoBio Powersoil Total 
RNA Isolation and DNA Elution Accessory kits (Qiagen®, 
Carlsbad, CA), following manufacturer protocols. DNA 
qualification and quality were measured using a Nanodrop™ 
2000 spectrophotometer.

Soil DNA (30 µl) was sent to the University of Min-
nesota Genomics Center and Colorado State University 
Next-Generation Sequence (NGS) lab for library prepara-
tion and sequencing on an Illumina MiSeq and paired-end 
2 × 250 reads were generated. Out of 63 samples, a total of 
57 were sent for sequencing; the six remaining samples were 

Fig. 1  Historical (1987) dis-
tribution of Armillaria species 
within the Ida Creek field site 
at the Priest River Experi-
mental Forest, Idaho, USA. 
Pixels represent individual trees 
with colors representing the 
association between Armillaria 
altimontana or A. solidipes. 
Split pixels represent trees that 
were associated with both A. 
altimontana and A. solidipes 
(Warwell et al., 2019, 20)

https://www.geneious.com
https://www.geneious.com
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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excluded because they did not yield sufficient DNA concen-
tration/quality. Libraries were prepared for the internal tran-
scribed spacer (ITS2) region to sequence fungal communi-
ties and the v4 genomic region of the 16S rRNA to sequence 
bacterial communities. Primers ITS3 (5′-GCA TCG ATG 
AAG AAC GAG C-3′) and ITS4 (5′-TCC TCC GCT TAT TGA 
TAT GC-3′) [68] were used to amplify the ITS2 region, and 
primers 515F (5′-GTG CCA GCMGCC GCG GTAA-3′) and 
806R (5′-GGA CTA CHVHHHTWT CTA AT-3′) [69] were 
used to amplify the v4 region of the 16S rRNA. DNA-free 
samples were included as negative controls to verify lack of 
microbial or DNA contamination in the buffers and primer 
sets. These sequence data have been submitted to the NCBI 
SRA database under accession number PRJNA767898.

Cleaning DNA Sequence Data

Data were cleaned to ensure base-calling accuracy 
of ≥ 99.9% using the paired-end mode in the program Trim-
momatic v0.36 [70]. Sequences ≤ 100 bp in length, low-
quality bases scores (≤ 15), and 4 bp sliding window regions 
with low average-quality scores (≤ 25) were removed from 
the data set. The software Mothur v1.40.5 [71] was imple-
mented utilizing the standard operating procedure [72], 
with some adjustments, to call operational taxonomic units 
(OTUs) and classification of taxa. Following adjustments 
described in the SOP (https:// github. com/ Abdo- Lab/ Micro 
biome- Analy sis- Scrip ts/ blob/ master/ PE- de- novo- proce ssing. 
pl), UCHIME [73] was used for de novo identifications and 
removal of de novo chimeric sequences, and USEARCH 
[74], utilizing the dgc (distance-based greedy clustering) 
option, was used for clustering. Groups that were ≥ 97% 
similar were classified as belonging to the same OTU. 
Sequences associated with lineages of chloroplast, mito-
chondria, archaea, and bacteria were removed from the table 
of classified sequences. We utilized the 128 Silva database 
[75] and the UNITEv6_sh_dynamic_s [76] databases for 
bacterial and fungal taxonomic classifications, respectively, 
using Wang’s Naïve Bayes classifier with a cutoff value of 80 
[77]. Rarefaction curves were generated using the package 
“vegan” as implemented in R version 3.6.1 to assess diver-
sity and suitability of depth of coverage per sample [78].

Statistical Analysis of Soil Microbial Communities

Using the RStudio interface to R (R Core Team 2017), alpha 
diversity, including Shannon diversity index and Inverse 
Simpson, was calculated using phyloseq [79], and rarefied 
richness (Richness) was determined in Vegan. Shannon’s 
index was used to determine diversity utilizing the relation-
ship to richness and rare microbes [80, 81]. Inverse Simp-
son was used to identify diversity based on evenness and 
more dominant microbes [81]. Richness was considered as 

the number of individuals identified within a single sample, 
while evenness was used to explain the relative abundance 
of the different individuals [82].

The relative abundance of taxa associated with A. 
solidipes- and A. altimontana–associated soils was deter-
mined for the top fungal and bacteria taxa using a stacked 
bar graph with the metagenomeSeq package in R [83]. Dif-
ferences among communities associated with Armillaria 
species were assessed using a PERMANOVA. Principle 
component analysis plots were completed in vegan to visu-
alize fungal and bacterial soil differences associated with 
each Armillaria species.

Utilizing relative abundance data based on the resulting 
OTU table, bar graphs were generated using the ggplot2 
package [84] in R for observed taxa with relative abun-
dance > 1% at the genus level to describe the microbial com-
munity structure associated with each Armillaria species. 
The metagenomeSeq package [83] in R was used to fit a 
model that identified those OTUs associated with signifi-
cance of model fit at a 0.01 level and minimum fold change 
of 2 (p values were adjusted for multiple testing), which was 
used to identify the driver of OTU differences between treat-
ments. Core fungal and bacterial communities were created 
for each Armillaria species. Counts were calculated in R to 
assess the presence of an OTU corresponding to each spe-
cies of Armillaria. Venn diagrams were produced using mol-
biotools.com to identify unique and shared fungal and bacte-
rial taxa associated with A. solidipes and A. altimontana.

To identify influences of soil chemistry properties on soil 
fungal communities, a PERMANOVA analysis was com-
pleted using the vegan package in R. The analysis identi-
fied significant predictors by completing a forward stepwise 
analysis based on the subset of variables that minimized the 
Akaike information criterion (AIC).

Results

Genome Assemblies of A. solidipes and A. 
altimontana

The PacBio assemblies resulted in a 73,739,702-bp genome 
for A. altimontana isolate 837–10 and a 55,735,298-
bp genome for A. solidipes isolate ID001; both isolates 
originated near Elk River, ID, USA (Table 1). The ratio 
of genome sizes, A. altimontana/A. solidipes = 1.32, is 
consistent with the ratio of the reported DNA content per 
nucleus of these two species, 1.34 [19]. The corresponding 
genome assemblies were deposited at the NCBI with acces-
sion numbers JAIWYR000000000 for A. altimontana and 
JAIWYQ000000000 for A. solidipes.

In a whole-genome phylogenetic tree, two A. solidipes 
isolates from North America, ID001and 28–4, group 

https://github.com/Abdo-Lab/Microbiome-Analysis-Scripts/blob/master/PE-de-novo-processing.pl
https://github.com/Abdo-Lab/Microbiome-Analysis-Scripts/blob/master/PE-de-novo-processing.pl
https://github.com/Abdo-Lab/Microbiome-Analysis-Scripts/blob/master/PE-de-novo-processing.pl
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together (Fig. 2), apart from but close to isolate C18/9 of 
A. ostoyae from Europe [28]. Figure 2 also shows the posi-
tion of A. altimontana with respect to A. solidipes and other 
Armillaria species. Armillaria altimontana is contained 
within a clade comprising A. cepistipes B5 and A. gallica 
Ar21-2, which is distinct from the A. solidipes/ostoyae clade.

After a custom library of repeats obtained using Repeat-
Modeler was input to RepeatMasker, more bases in A. alti-
montana (18,346,415 bp) were masked compared to those 
in A. solidipes (9,691,790 bp). When comparing A. alti-
montana to A. solidipes, the relative proportion of masked 
bases (1.89) was larger than the ratio of their genome sizes 
(1.32). The percentage of genomic sequences occupied by 
interspersed repeats and low complexity DNA regions for 

A. altimontana and A. solidipes were 24.88% and 17.39%, 
respectively (Table  S1); the largest percentages corre-
sponded to retrotransposons. The most abundant retrotrans-
posons were long terminal repeats (LTRs) as is common in 
other fungi [85].

Completeness of the genome assemblies was assessed 
using BUSCO using datasets for both the fungal and basidi-
omycota lineages. The A. altimontana genome assembly 
was 95.1% complete when compared to the fungal dataset 
and 96.7% when compared to the Basidiomycota dataset. 
The completeness values for A. solidipes were similar at 
95.9% and 96%, respectively, and similar to those reported 
for other Armillaria species [28], which indicates high qual-
ity for genome assemblies.

Large blocks of shared synteny were found when 
comparing the A. altimontana and A. solidipes genomes 
(Fig. 3A shows the 20 largest scaffolds of each species), 
especially for some of the largest scaffolds of each species 
(Fig. 3B–G). For example, most of A. altimontana scaf-
fold 1 (5,843,527 bp) shared synteny with blocks in two A. 
solidipes scaffolds (1 and 2; Fig. 3B), most of A. altimontana 
scaffold 2 (5,540,602 bp) shared synteny with blocks in three 
A. solidipes scaffolds (10, 14, and 18; Fig. 3C), and most 
of A. altimontana scaffold 3 (4,489,203 bp) shared synteny 
with blocks in two A. solidipes scaffolds (7 and 11; Fig. 3D). 

Table 1  Genome assembly metrics for Armillaria altimontana and A. 
solidipes 

Feature A. altimontana A. solidipes

No. of scaffolds 100 72
Total length 73,739,702 55,735,298
Largest contig 5,843,527 4,463,803
GC (%) 47.77 48.26
N50 1,930,169 2,424,439

0.007

A. altimontana 837-10

A. solidipes ID001

A. mellea DSM3731

A. solidipes 28-4

A. cepistipes B5

A. gallica Ar21-2

A. fuscipes CMW2740

A. ostoyae C18/9

100

100

100

100

100

Fig. 2  Whole-genome phylogenetic tree of Armillaria species: Armillaria mellea DSM3731 (France), A. altimontana 837–10 (Idaho), A. cepis-
tipes B5 (Italy), A. gallica Ar21-2 (Vermont), A ostoyae C18/9 (Switzerland), A. solidipes ID001 (Idaho), and A. solidipes 28–4 (Vermont)
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Likewise, most of A. solidipes scaffold 1 (4,463,803 bp) 
shared synteny with blocks in three A. altimontana scaf-
folds (1, 9, and 13; Fig. 3E); most of A. solidipes scaf-
fold 2 (4,456,508 bp) shared synteny with blocks in two 
A. altimontana scaffolds (1 and 14; Fig. 3F); and most of 
A. solidipes scaffold 3 (4,392,256 bp) shared synteny with 
blocks in four A. altimontana scaffolds (8, 17, 18, and 37; 
Fig. 3G). A number of other smaller complete scaffolds of 
each species also shared synteny with blocks in one or more 
scaffolds of the other species (Fig. 3A).

Structural and Functional Annotation

The Maker annotation pipeline predicted several features 
for the genome assemblies, including CDs, exons, 5′-UTRs, 
genes, mRNAs, 3′-UTRs, and tRNAs, which were organized 
in GFF3 files (Table 2; Supplementary Files 1 and 2). High 
similarity was observed between the genomes of A. altimon-
tana and A. solidipes. More protein-coding genes were pre-
sent in the A. altimontana genome (19,130 versus 16,105), 
although the ratio of protein-coding genes, 1.18, is a little 
smaller than the ratio of genomes sizes (1.32). Despite its 
smaller genome, the A. solidipes genome contained more 
tRNAs genes (315 versus 280) (Table 2).

Completeness of the predicted proteomes was assessed 
using BUSCO, again with datasets for both the fungal and 
Basidiomycota lineages. For A. altimontana, proteome 
completeness was 96.9% when compared to the fungal 
dataset and 96.4% when compared to the Basidiomycota 
dataset. Proteome completeness values for A. solidipes 

were 97.2% and 96.7%, respectively, indicating high qual-
ity of the genome structural annotations.

Predicted proteins sets for A. altimontana and A. 
solidipes (Supplementary Files 3 and 4) were function-
ally annotated using BLASTp against all the fungi entries 
in the Uniprot database and by using InterProScan includ-
ing the Pfam application. These results were added to the 
final genome models produced by Maker, in GFF3 for-
mat (Supplementary Files 1 and 2). For A. altimontana, 
17,997 encoded proteins had a BLASTp hit, and 8483 had 
an InterProScan (Pfam) hit (94.0% and 44.3% of the total, 
respectively). For A. solidipes, 15,449 encoded proteins 
had a BLASTp hit, and 8132 had an InterProScan (Pfam) 
hit (95.9% and 50.4% of the total, respectively).
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Fig. 3  Blocks of synteny comparing the 20 largest scaffolds of each Armillaria species (A); B–D block of synteny of the three largest A. alti-
montana scaffolds with A. solidipes scaffolds; E–G blocks of synteny of the three largest A. solidipes scaffolds with A. altimontana scaffolds

Table 2  Genome features of Armillaria altimontana and A. solidipes 

a Some genes are predicted to code for more than one protein

Feature A. altimontana A. solidipes

Genes 19,326 16,357
Average gene length (bp) 1504 1563
Gene density (genes per Mb) 262 293
Average exons per gene 5.2 5.6
Average exon length (bp) 219.8 217.2
Average introns per gene 4.2 4.6
Average intron length (bp) 85.9 75.3
tRNA genes 280 315
transcripts/proteinsa 19,130 16,105
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In comparisons with other Armillaria proteomes, 9061 
A. altimontana isolate-encoded proteins had a BLASTp hit 
to A. gallica proteins, 4723 to A. ostoyae proteins, and 3906 
to A. solidipes proteins (8629 to A. ostoyae/solidipes pro-
teins) (Supplementary Files 3 and 4). For our A. solidipes 
isolate–encoded proteins, only 1321 had a BLASTp hit to 
A. gallica proteins, 6665 to A. ostoyae proteins, and 7300 to 
other A. solidipes proteins (13,795 to A. ostoyae/solidipes 
proteins).

Secreted Proteins The program Deeploc was used to obtain 
corresponding sets of putative secreted proteins of A. alti-
montana and A. solidipes to search for differences that might 
reflect their lifestyle differences. A total of 1235 (6.4% of the 
total) secreted proteins were predicted in A. altimontana, 
and 1157 (7.1%) were predicted in A. solidipes. In A. alti-
montana, 322 secreted proteins had a CAZyme annotation, 
and 2 were cytochrome P450; in A. solidipes, the number 
of hits in each category was similar: 316 as CAZYmes, and 
3 were cytochrome P450. No secreted proteins from either 
species had a blast hit with identity above 95% to proteins 
in the PHI database (data not shown). Some of the proteins 
had a CAZyme and a BLASTp hit, with one or several hits 
in the InterProScan search. But 99 secreted proteins in A. 
altimontana produced no hits and another 436 produced only 
BLASTp hits to uncharacterized proteins; in A. solidipes, 69 
secreted proteins produced no hits and another 421 produced 
only BLASTp hits to uncharacterized proteins. However, 

many of these uncharacterized proteins could be considered 
“small secreted proteins” (see below). All those different 
annotations were combined and manually curated (Supple-
mental Files 3 and 4).

Numbers of secreted proteins with putative involvement 
in pathogenicity were obtained for each Armillaria species. 
The differences between the two species were small (Fig. 
S1); the two major differences were a higher number of 
peptidases secreted by A. solidipes and a higher number of 
small secreted proteins for A. altimontana.

When grouped by probable function (Fig. 4), the major 
differences in predicted secreted proteins of A. altimontana 
and A. solidipes were associated with cell wall–degrading 
enzymes. Armillaria solidipes showed a slightly larger num-
ber of enzymes that degrade plant cell wall components: 
cellulose, hemicellulose, lignin, and especially pectin. 
Encoded protein-degrading enzymes also were more abun-
dant in A. solidipes compared to A. altimontana (Fig. 4). 
Abundances of other encoded protein categories showed 
smaller differences.

The number of encoded proteins that could be consid-
ered “small secreted proteins,” defined as those smaller 
than 300 amino acids (after being predicted as “extracel-
lular”), was 678 (~ 55% of total secreted) in A. altimon-
tana, 381 with ≥ 2% cysteine residues, and 594 (~ 51% of 
total secreted) in A. solidipes, 334 with ≥ 2% cysteine resi-
dues. Numerous encoded small secreted proteins (205 in 
A. altimontana and 172 in A. solidipes) were annotated as 
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Fig. 4  Comparison of the number of pathogenicity-related secreted proteins in Armillaria altimontana and A. solidipes, grouped by function. 
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CAZymes, peptidases, thaumatin, cerato-platanin, hydro-
phobins, etc. (Supplemental Files 3 and 4); however, for 
other predicted small secreted proteins (375 in A. altimon-
tana and 353 in A. solidipes), the only annotation were 
BLASTp hits to “uncharacterized protein,” and there was no 
annotation for other predicted proteins (98 in A. altimontana 
and 69 in A. solidipes).

Non‑secreted Proteins Numerous different functions were 
found among encoded proteins considered as non-secreted. 
Among them, those that matched CAZymes, cytochrome 
P450, transporters, or secondary metabolite clusters were 
further examined (Table 3). Transporters and secondary 
metabolites clusters were also included in these analy-
ses because they have also been considered important for 
the lifestyle of fungal species [86, 87]. The abundance of 
encoded proteins annotated as CAZymes, ABC transport-
ers, and secondary metabolite clusters was similar between 
A. altimontana and A. solidipes (Table 3), whereas numbers 
of cytochrome P450 and all transporters were larger in A. 
altimontana. However, the ratio A. altimontana/A. solidipes 
encoded protein numbers for most categories was smaller 
than the ratio of the genome sizes (1.32) and total proteins 
(1.18); only cytochrome P450 ratio was slightly higher 
(1.25) than the ratio of total proteins (Table 3).

When the abundance of the non-secreted CAZymes was 
grouped by substrate, the largest differences were found 
within encoded pectin-degrading enzymes with 58 in A. alti-
montana and 47 in A. solidipes; carbohydrate binding with 
17 and 8, respectively; and lignin-degrading enzymes with 
49 and 41, respectively (Fig. S2). Overall, most non-secreted 
CAZyme numbers were typically higher in A. altimontana 
in comparison with A. solidipes.

Genes Upregulated in Rhizomorphs

We searched for genes reported by Sipos et al. [28] as nota-
ble genes that were upregulated in rhizomorphs. Most of 
the categories had similar numbers between both Armil-
laria species, although A. altimontana possessed 62 more 
genes encoding cytochrome P450 (Table 4). A diversity of 
functions has been ascribed to cytochrome P450 proteins 
[88–91]. Caspase domain–containing proteins, part of pro-
teases that have been associated with programed cell death 
in other organisms [92], were more abundant (10 more) in 
A. solidipes (Table 4). Relatively large differences were also 
found in numbers of genes encoding two enzymes involved 
in secondary metabolites synthesis: polyprenyl synthase, 
involved in terpenoid synthesis [93, 94]: A. altimontana 
had 23 and A. solidipes had 12. In contrast, genes encoding 
trichodiene synthase, which utilize terpenoids to produce 
the trichodiene [94], were more abundant in A. solidipes 
with 12, compared to A. altimontana with only had three 
(Table 4).

Orthologous and Non‑orthologous Proteins

Although approximately 62% of A. altimontana and 72% of 
A. solidipes predicted proteins grouped in 10,989 clusters 
of orthologous proteins, a large number, 7232, of proteins 
were non-orthologous in A. altimontana, and 4575 were 
non-orthologous in A. solidipes (Fig. 5A).

Out of the 10,989 clusters of orthologous proteins, 10,321 
were two-protein clusters, which composed of one protein 
from each species; only 29 clusters had a difference larger 
than five proteins (Table 5). Of those, A. altimontana had 
more proteins in 24 clusters, whereas A. solidipes had more 
proteins in five clusters. Out of those 29 clusters, one cluster 
contained CBM67 proteins, which bind rhamnose residues 
in pectin, with 15 proteins from A. altimontana versus only 
one from A. solidipes. Another cluster contained ABC trans-
porters, of which, A. altimontana also had 10 more than A. 
solidipes. Two clusters contained caspase domain proteins, 
with 17 more from A. solidipes than from A. altimontana. 
Other clusters corresponded to transposases, transcription 
factors, helicases, F-box proteins, and histone-modifying 
enzymes, while no annotation was found for 14 clusters 
(Table 5).

CAZymes and cytochrome P450 enzymes were found 
among non-orthologous proteins (Table 5). The number 
of non-orthologous CAZymes was 91 in A. altimontana 
and 80 in A. solidipes, with small differences in number of 
individual CAZymes between the two species, which are 
similar to the differences found in secreted and non-secreted 
CAZymes. A few non-orthologous CAZymes were exclu-
sive, but only GT32 was found exclusively in A. altimontana 
among CAZymes with a count > 5. For cytochrome P450, 

Table 3  Total number of non-secreted proteins by gene family for 
Armillaria altimontana and A. solidipes. The genome sizes were 
included for comparison

Feature A. altimontana A. solidipes Ratio

Total non-secreted 17,895 14,948 1.19
CAZymes-cytochrome 

P450
334–242 305–195 1.09–1.25

Total transporters 474 414 1.14
ABC transporters 67 60 1.11
Secondary metabolite 

clusters
21 19 1.10

Total proteins 19,130 16,105 1.18
Genome size 73,739,702 55,735,298 1.32
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the difference was larger, with 39 more in A. altimontana 
(Table 5), and slightly smaller than the difference, 47, of 
total cytochrome P450 proteins (242 in A. altimontana vs 
195 in A. solidipes; Table 3).

Many other proteins that were present in both A. altimon-
tana and A. solidipes with the same Pfam-Interpro annota-
tion were still considered non-orthologous by OrthoVenn2, 
and their numbers were also similar in most cases. Those 
with a number difference > 5 included polyprenyl synthase, 
trichodiene synthase, F-box protein, and glutathione S-trans-
ferase (Table 5). Other proteins were present only in one 
Armillaria species; most of these occurred in small numbers: 
three with counts > 5: Clp amino terminal domain patho-
genicity island component; DDE superfamily endonuclease, 
only in A. altimontana; and sodium/hydrogen exchanger 
family, only in A. solidipes. Other non-orthologous pro-
teins with smaller numbers, but with a possible functions 
in host–pathogen interactions, included terpene synthase 
(4) and transcriptional activator of glycolytic enzymes (4), 
which were found only in A. altimontana (Table 5).

Finally, 344 A. altimontana non-orthologous proteins 
were predicted as secreted with 327 of these representing 
small secreted proteins. For non-orthologous proteins from 

A. solidipes, 265 were predicted as secreted with 248 of 
these representing small secreted protein (Table 5).

Armillaria Species Identified from Field Plots

Rhizomorphs were isolated from 51 total trees, yielding 
87 rhizomorph samples that all produced pure Armillaria 
cultures. Based on tef1 sequencing of the 87 cultures from 
rhizomorph samples, 48 trees were associated with A. alti-
montana, and three trees were associated with A. solidipes. 
Rhizomorph isolation was unsuccessful for 12; therefore, 
these samples were not utilized in analyses. Sequences cor-
responding to both A. altimontana and A. solidipes resulted 
in 99% identity during BLAST searches on the NCBI 
database.

Processing Sequenced 16S and ITS2 Libraries 
in Mothur

From the soil samples, a total of 2,156,476 and 4,323,028 
raw paired-end 2 × 250 bp reads from 56 samples were 
generated from 16S and ITS sequencing, respectively. 
For the 16S dataset, the mean sequencing depth after 

Table 4  Number of notable 
genes with overexpression 
in rhizomorphs (Sipos et al. 
2017; 27) in the Armillaria 
altimontana and A. solidipes 
genome assemblies

Protein coded (Pfam terms) A. altimontana A. solidipes

Expansin (PF03330) 12 8
Bzip transcription factor (PF00170) 5 5
Zinc finger c2h2 (PF00096, PF12874, PF12756, PF06220, PF16278, 

PF08790)
62 68

Caspase domain (PF00656, PF14538) 30 40
Hydrophobin (PF01185) 7 4
Cytochrome P450 (PF00067) 271 209
GH28 (PF00295) 17 16
Pectinesterase (PF01095) 9 10
GH88 (GH105) (PF07470) 6 5
PL3 (PF03211) 9 10
GH3 (PF00933) 16 14
GH43 (PF04616) 11 10
GH76 (PF03663) 6 5
AA9 (PF03443) 18 21
Total cellulases 183 179
Cellulase (PF00150) 19 19
POD (PF00141; PF11895) 10 11
HTP (PF01328) 6 6
Laccase (PF00394) 25 28
Cerato-platanin (PF07249) 4 4
Carboxylesterase (PF00135) 32 37
Family 6 bacterial extracellular solute–binding protein (PF13343) 2 1
Polyketide synthase (PF14765) 10 7
Trichodiene synthase (PF06330) 3 12
Polyprenyl synthase (PF00348) 23 12
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processing was 27,639 reads/sample, with a range from 
6 to 107,582. Eighteen samples yielded < 5000 total reads 
and were removed from analyses for the 16S dataset. For 
the ITS dataset, the mean sequencing depth after process-
ing was 51,806 reads/sample, with a range from 15,017 to 
77,969. The total datasets yielded 26,781 and 6936 OTUs 
for the 16S and ITS2, respectively. The resulting rarefac-
tion curves for these 16S sequence data indicate adequate 
sampling depth (Fig. S3). Matching to the Silva database 
resulted in a 16S dataset of 6677 unique OTUs, and match-
ing to the UNITE database resulted in an ITS2 dataset of 
2806 unique OTUs.

Differences in Community Alpha Diversity 
and Richness

Bacterial and fungal communities were assessed for overall 
rarefied richness and diversity (Fig. S3). We did not observe 
significant differences in richness among soil fungal com-
munities associated with A. solidipes or A. altimontana 
(F(1,52) = 0.0462, P = 0.8310). Additionally, we did not 
observe significant fungal differences for either diversity 
index (Shannon’s or inverse Simpson) associated with A. 
solidipes or A. altimontana (F(1,52) = 0.16, P = 0.6910; 
F(1,52) = 0.5729, P = 0.4530; Table S2). Although not sta-
tistically significant, soils associated with A. solidipes 
had greater fungal richness and diversity, compared to A. 
altimontana. Bacterial richness measurements indicated 
that soils associated Armillaria species were slightly sig-
nificant (F(1,34) = 3.905, P = 0.0563) with A. altimontana 
having greater richness. For both diversity indices, soils 
associated with A. altimontana had greater bacterial com-
munity diversity. Shannon’s diversity was slightly signifi-
cant (F(1,34) = 4.0619, P = 0.0518), though the inverse Simp-
son index was not significant between Armillaria species 
(F(1,34) = 1.4005, P = 0.2448; Table S2).

Additionally, A. altimontana had a slightly significant 
positive relationship (P = 0.053) and soil moisture had a sig-
nificant negative relationship (P = 0.013) with fungal rich-
ness (Table S3). In the diversity analyses, the Shannon’s 
diversity model was not significant (P = 0.489), while A. alti-
montana (P = 0.067; positive) and soil moisture (P = 0.078; 
negative) both had an influence on diversity. No edaphic var-
iables significantly correlated to inverse Simpsons diversity 
measures across fungal communities (P = 0.558; Table S3). 
Soil moisture had a significant negative relationship with 
bacterial richness (P = 0.049; Table S4). Both A. solidipes 
(P = 0.039) and soil moisture (P = 0.022) had a significant 
negative relationship with bacterial Shannon’s diversity. The 
bacterial inverse Simpson diversity model was significant 
(P = 0.0423), with soil moisture (P = 0.024, negative) as the 
lone significant predictor (Table S4).

B Comparison of bacterial communities

A. solidipes
79

(1.2%)

A. altimontana
5643

(84.5%)

955
(14.3%)

A. altimontana
2219

(79.1%)

A. solidipes
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(2.4%)

521
(18.6%)

7,232
non-orthologous

 proteins

4,575
non-orthologous

 proteins

23,428
orthologous proteins

11,898 A. altimontana
11,530 A. solidipes

10,989 clusters

19,130 proteins 16,105 proteins

A Comparison of proteins 

C Comparison of fungal communities

Fig. 5  A Orthologous and non-orthologous proteins of Armillaria 
altimontana and A. solidipes. B, C Microbial communities (OTUs) 
between A. altimontana and A. solidipes. The core microbiome 
encompasses overlap between both species, while unique OTUs occur 
within each circle for bacterial communities (B) and fungal commu-
nities (C)
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Table 5  Number of orthologous and non-orthologous proteins in 
Armillaria altimontana and A. solidipes. Only information for pro-
teins with count differences > 5 were included, except for non-orthol-

ogous terpene synthase and transcriptional activator of glycolytic 
enzymes for which only four were present in A. altimontana 

Orthologous  proteinsa

Cluster_name Protein number Annotation A. altimontana A. solidipes
Cluster 1 30 Transposase 28 2
Cluster 6 19 BTB/POZ domain protein, maybe transcription 

factor
18 1

Cluster 12 16 CBM67, rhamnose binding in polysaccharides 
(pectin)

15 1

Cluster 13 16 Only one protein with: zinc knuckle domain 15 1
Cluster 2 21 Helicase, involved in telomere maintenance 15 6
Cluster 4 21 No annotation 14 7
Cluster 19 14 No annotation 13 1
Cluster 14 15 No annotation 13 2
Cluster 27 13 F-box domain protein, different functions 

including fungal pathogenesis
12 1

Cluster 31 12 No annotation 11 1
Cluster 30 12 ABC transporter 11 1
Cluster 24 13 No annotation 11 2
Cluster 53 10 No annotation 9 1
Cluster 55 10 Only one protein with: uncharacterized domain 9 1
Cluster 61 9 No annotation 8 1
Cluster 63 9 Transposase 8 1
Cluster 68 9 No annotation 8 1
Cluster 70 9 No annotation 8 1
Cluster 73 9 No annotation 8 1
Cluster 74 9 No annotation 8 1
Cluster 79 9 Helicase, involved in telomere maintenance 8 1
Cluster 54 10 No annotation 8 2
Cluster 44 10 SET domain protein, histone-modifying 

enzymes
8 2

Cluster 81 8 No annotation 7 1
Cluster 40 11 Only three proteins with: domain of unknown 

function
2 9

Cluster 10 19 F-box domain protein, different functions 
including fungal pathogenesis

2 17

Cluster 99 8 Caspase domain protein 1 7
Cluster 100 8 No annotation 1 7
Cluster 28 13 Caspase domain protein 1 12
Non-orthologous proteins
Annotation A. altimontana A. solidipes
CAZymes 91 80
Cytochrome P450 87 48
Other proteins with count difference > 5
polyprenyl synthase 15 6
trichodiene synthase 2 11
F-box protein 81 52
glutathione S-transferase 1 11
Clp amino terminal domain, pathogenicity 

island component
6 0

DDE superfamily endonuclease 8 0
Sodium/hydrogen exchanger family 0 8
Secreted proteins/small secreted proteins 344/327 265/248
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Bacterial and Fungal Beta Diversity

Principal components analysis (PCoA) was completed to 
quantify beta diversity between bacterial and fungal commu-
nities associated with each Armillaria species. Beta diversity 
associated with soil bacterial communities of A. altimontana 
and A. solidipes were not significantly different (P = 0.544), 
and this is observed in the PCoA plot (Fig. S4A). Axes 1 
and 2 described 21.7 and 12% of the variation, respectively. 
We observed that beta diversity indices were significantly 
different for fungal soil communities associated with Armil-
laria species as well (P = 0.016) (Fig. S4B). Compared to 
the bacterial communities, axes 1 and 2 described less of the 
fungal variation at 9.67 and 7.25%, respectively.

Core Communities Associated with Armillaria 
Species

Venn diagrams were constructed to identify the individ-
ual and core bacterial and fungal communities (Fig. 5 A 
and B). Of the 6677 total OTUs, the core bacterial com-
munities for soils associated with both Armillaria species 

consisted of 955 OTUs (14.3%). While a significant abun-
dance, 5643 OTUs (84.5%), was uniquely associated with A. 
altimontana, only 79 (1.2%) were uniquely associated with 
A. solidipes (Fig. 5B). The core fungal community associ-
ated with both A. altimontana and A. solidipes consisted 
of 521 OTUs (18.6%). Far surpassing the core community, 
2219 OTUs (79.1%) were unique to A. altimontana–associ-
ated soils, whereas only 66 (2.4%) OTUs were unique to A. 
solidipes–associated soils (Fig. 5C).

Taxonomic Trends and Relative Abundance

There were 17 16S bacterial families that exceeded the rela-
tive abundance of 1% (Fig. 6A). All 17 families were in soils 
associated with A. altimontana. Pseudomonadaceae was 
found in high abundance followed by Chthoniobacteraceae 
and Pyrinomonadaceae with A. altimontana. We observed a 
large relative abundance of Enterobacteriaceae, followed by 
Pseudomonadaceae with A. solidipes (Fig. 6A).

In total, 17 fungal families exceeded a relative abundance 
of 1% (Fig. 6B). Mortierellaceae was found in high abun-
dance for both A. altimontana and A. solidipes. Although 

a 2 protein clusters = 10,321; 3–5 protein clusters = 576; > 5 protein cluster = 29

Table 5  (continued)

Exclusive with possible host-interaction func-
tion

terpene synthase 4 0
transcriptional activator of glycolytic enzymes 4 0
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Tremmelomycetes_unclassified
Atheliaceae
Cortinariaceae
Cunninghamellaceae
Helotiales
Hypocreaceae
Hypocreales
Inocybaceae
Mortierellaceae
Myxotrichaceae
Piskurozymaceae
Pucciniomycotina
Rhizogonaceae
Trichocomaceae
Fungi_unclassified
Leotiomycetes
Ascomycota_unclassified

B.Fungal Communities

A. altimontana A. solidipes

Armillaria

16S Families
AD3
Burkholderiaceae
Chthoniobacteraceae
Enterobacteriaceae
Gemmataceae
Gemmatimonadaceae
Nitrosomonadaceae
Pedosphaeraceae
Pseudomonadaceae
Pyrinomonadaceae
Rokubacteriales
Solibacteraceae
Subgroup 2
Subgroup 6
uncultured
WD2101
Xanthobacteraceae
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A. Bacterial Communities

ITS2 Families

Fig. 6  Stacked bar graphs of top 17 most abundant bacterial families (A) and fungal families (B) for Armillaria altimontana and A. solidipes 
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not significant, fungal communities including Atheliaceae, 
Cortinariaceae, Helotiales, Hypocreaceae (e.g., Trichoderma 
spp.), Pucciniomycotina, and Rhizopogonaceae were more 
abundant in association with A. altimontana, whereas more 
Hypocreales, Inocybaceae, and Leotiomycetes were detected 
in soils associated with A. solidipes (Fig. 6B).

MetagenomeSeq analysis

We identified a total of four bacterial taxa that contrib-
uted significantly to the differential comparison between 
Armillaria species using the magnitude of OTU log-fold 
change (Fig. 7A). A proliferation, at 90% confidence, of 
Nitrosococcaceae (wb1-P19), Solirubrobacteraceae, Enter-
obacteriaceae, and Gammoproteobacteria_PLTA13_fa 
was found in A. solidipes–associated soils, whereas only 
uncultured bacteria were found to be significantly greater 

in A. altimontana–associated soils. We identified a total of 
five fungal taxa that contributed significantly to the com-
parison between Armillaria species using the magnitude of 
OTU log-fold change at the 90% confidence level (Fig. 7B). 
These analyses identified a proliferation of Atheliaceae, 
Suillaceae, Rhizopogonaceae, and unclassified fungi in A. 
altimontana–associated soils, whereas only a single OTU 
(unclassified fungi) was significantly more abundant in A. 
solidipes–associated soils.

Discussion

We report the high-quality genome assemblies with struc-
tural and functional annotations for two Armillaria species 
(A. altimontana and A. solidipes) that display different eco-
logical lifestyles. In addition, we examined the potential 
role and relationship among microbial communities that 
may correspond with the different ecological behaviors of 
A. altimontana and A. solidipes. Armillaria isolates were 
obtained from a conifer forest in northern Idaho within 
the interior western USA, where A. altimontana primarily 
behaves as a saprophyte and potentially beneficial biocon-
trol agent enhancing the growth/survival of western white 
pine [20] and A. solidipes primarily acts as an aggressive 
pathogen of diverse conifers [11, 13, 95]. In a whole-genome 
phylogenomic tree, A. cepistipes and A. gallica, which are 
often considered as weak or opportunistic pathogens, are 
closely related to A. altimontana. This result is similar to 
other published phylogenetic trees, where A. altimontana 
tends to group with less virulent pathogens (e.g., A. cepis-
tipes, A. calvescens, A. gallica, and A. nabsnona) within 
the Gallica superclade, which is well separated from the A. 
solidipes group (e.g., A. ostoyae, A. gemina, and A. sinapina) 
within the Solidipes/Ostoyae superclade [22, 23, 96]. The 
phylogenetic placement of A. altimontana, compared to A. 
mellea, a virulent pathogen within Mellea superclade, which 
is ancestral to the Gallica superclade, suggests that perhaps 
A. altimontana is evolving towards lower virulence.

The genome assemblies presented here were similar in 
size to other Armillaria genomes assemblies, although our 
A. solidipes genome is smaller than the A. solidipes/ostoyae 
28–4 genome of Anderson and Spatafora (58.01 Mbp; JGI 
web site); this could be attributable to the different sequenc-
ing technologies used (PacBio and Illumina, respectively) 
and/or different isolates sequenced. Both A. solidipes assem-
blies are, however, smaller than the A. ostoyae C18/9 (60.1 
Mbp) assembly from Europe [28]. Although it has been pro-
posed that A. solidipes and A. ostoyae are a single species 
[97], genomic differences result in a separate grouping for 
A. ostoyae (C18/9) from Europe, which is distinct from the 
two A. solidipes isolates from North America in the whole-
genome phylogenetic tree. Thus, the phylogenomic analysis 

Gammaproteobacteria_PLTA13_fa

Enterobacteriaceae

uncultured

Solirubrobacteraceae

Nitrosococcaceae

−8 −6 −4 −2 0 2

Atheliaceae

Rhizopogonaceae

Suillaceae

Fungi_unclassified

Fungi_unclassified

log Fold Change
−4 −2 0 2 4 6

log Fold Change

A Signficant Bacterial Communities (90%)

B  Signficant Fungal Communities (90%)

Fig. 7  Log fold change for unique bacterial (A) and fungal (B) OTUs 
in association between A. altimontana (red) and A. solidipes (blue). 
Significance is based on 90% confidence log fold change between 
both species of Armillaria 
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further supports that North American A. solidipes is distinct 
from Eurasian A. ostoyae.

Armillaria altimontana has a larger genome and a pro-
portionately larger number of protein-coding genes com-
pared to A. solidipes. It had twice as many sequences cod-
ing for repetitive elements (18,346,415 bp) than A. solidipes 
(9,691,790 bp); however, this difference is less than would 
be accounted for from the larger genome size alone (73.7 
Mbp versus 55.7 Mbp, respectively). Rather, it has been sug-
gested that gene family expansion has driven the increase of 
genome sizes in Armillaria in comparison with other Agari-
cales [28], and this could also be the mechanism responsible 
for the expanded genomes of A. altimontana, A. cepistipes 
(75.5 Mbp), and A. gallica (85.3 Mbp). Nevertheless, the 
genomes of A. altimontana and A. solidipes shared large 
blocks of synteny (i.e., large blocks of gene order when com-
paring the two genomes) suggesting that their gene sets are 
similar within the genomes of two Armillaria species. Inter-
estingly, A. altimontana genome encodes only slightly more 
secreted proteins, secreted CAZymes, ABC transporters, and 
secondary metabolite clusters, but with slightly fewer tRNA 
genes compared to A. solidipes. Though A. altimontana has 
a larger genome than A. solidipes, the genomes are similar 
in synteny and in gene content; however, A. altimontana 
contains considerably more predicted non-secreted proteins.

Although relatively few genomic differences were 
observed, genome signatures of lifestyle differences 
between A. solidipes and A. altimontana were highlighted 
by the variation in putative secreted proteins. Approximately 
1200 encoded proteins in the two Armillaria genomes were 
found as potentially secreted, which could be potentially 
also considered as potential “effectors” — important pro-
teins for interactions with a host [98]. Both species were 
well-equipped with genes encoding enzymes to degrade cell 
wall components, including cellulose, hemicellulose, lignin, 
pectin, proteins, and others. The major differences between 
the two Armillaria species are that A. altimontana had more 
carbohydrate-binding enzymes, beta-glucan-degrading 
enzymes, and more proteins predicted to be involvement in 
host interactions (hydrophobin, cerato-platanin), especially 
small secreted proteins [99]. In contrast, the genome of A. 
solidipes encoded more secreted putative cellulose, hemicel-
lulose, pectin, and lignin-degrading enzymes. The combina-
tion of these secreted proteins could confer A. solidipes with 
a higher ability to infect and cause damage to its host. How-
ever, this hypothesis requires functional tests, because the 
number of CAZymes varies widely when comparing fungi 
with similar or different lifestyles [100]. Also, it has been 
found that phylogenetic history can have a more important 
influence on secretome composition than lifestyle [101].

We found that more than half of predicted proteins in 
A. altimontana and almost two-thirds of A. solidipes pre-
dicted proteins could be considered orthologous. Most of 

these clusters had very similar numbers of proteins that were 
encoded in the genome of each Armillaria species. In con-
trast, all A. altimontana CBM67 proteins (15) were in a clus-
ter, with only one CBM67 protein encoded by A. solidipes. 
Of the 15 A. altimontana CBM67 proteins, 11 were pre-
dicted as secreted, as was the one A. solidipes CBM67 pro-
tein. CBM67 is one of several CBM considered “lectin-like,” 
and we speculate that in Armillaria spp., CBM67 proteins 
may have an additional functionality other that help in pectin 
degradation, such as interactions with the host and other 
organisms [102], particularly in A. altimontana which con-
tains more CBM67 genes.

Among non-orthologous proteins, another major differ-
ence was observed in the total numbers of gene encoding 
cytochrome P450 enzymes: A. altimontana had consider-
ably more both non-orthologous cytochrome P450 genes 
and a higher total of all cytochrome P450 genes, which are 
known to be involved in numerous metabolic pathways and 
biological processes including degradation of lignin and 
xenobiotics, secondary metabolite synthesis, and adaptation 
to different environments [88–91]. The versatile activities 
of cytochrome P450 enzymes make it difficult to assign a 
specific function for them, but we speculate that a larger 
number of genes encoding these enzymes, including many 
non-orthologous enzymes, could be associated with different 
lifestyles, in this case more saprophytic lifestyle for A. alti-
montana and a more pathogenic lifestyle for A. solidipes. A 
recent report also found a larger number of genes coding for 
cytochrome P450 in the saprophytic A. cepistipes compared 
to the pathogenic A. ostoyae [103].

Although non-orthologous proteins could have the similar 
molecular functions, their sequence differences could change 
their interactions with their substrates, regulation, or envi-
ronmental optima [104]. Furthermore, the expression levels 
and the timing of expression could account for important 
ecological differences in how the two Armillaria species 
interact with their hosts [103]. Variations in the expression 
of many genes, including some related to pathogenicity, have 
been observed even among strains of the same species, and 
these variations are associated with different levels of viru-
lence during host infection [105].

Rhizomorphs are an important and unique means by 
which that Armillaria species interact with their environ-
ment, hosts, and substrates. Differences in microbial commu-
nities associated with each Armillaria species can perhaps 
be putatively attributed to genes encoding enzymes similar 
to those secondary metabolite synthesis enzymes previously 
identified in Armillaria species [28]. We observed some dif-
ferences when comparing the number of genes upregulated 
in rhizomorphs in the two Armillaria species. For exam-
ple, polyprenyl synthase genes involved in terpenoid syn-
thesis were more abundant in A. altimontana compared to 
A. solidipes, whereas genes involved in the production of 
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trichodiene, a potential signaling molecule or mycotoxin 
[106], were more abundant in A. solidipes. In general, ter-
penoids can have many different structures and functions, 
which have been involved in the interaction between fungi 
and plants and other organisms [107–110]. Trichodiene, on 
the other hand, is the immediate precursor to a family of 
toxins that cause damage to plant hosts [111].

Although overall differences of soil microbial communi-
ties were not observed in association with the two Armil-
laria species, several bacterial taxa were more differentially 
abundant in soils associated with A. solidipes, and several 
fungal taxa were more differentially abundant in associa-
tion with A. altimontana. We identified the most significant 
logfold change of three Proteobacteria taxa within the Gam-
maproteobacteria class and Enterobacteriaceae in associa-
tion with A. solidipes. Interestingly, one of these included 
Nitrosococcaceae wb1-P19, which is thought to be a nitrite-
oxidizing autotrophic bacteria and that has previously been 
observed in caves [112–114]. In contrast, Gammaproteobac-
teria PLTA13_fa was found in high numbers in a Mn oxide-
producing biofilm [115]. With these unique characteristics, it 
is not unexpected that some taxa within Proteobacteria have 
been characterized in soils contaminated with pesticides 
[116]. A recent study examining healthy ginseng (Panax 
ginseng) and ginseng with rusty root disease also found 
that several Proteobacteria were found in high abundances 
among diseased plants [117], and increases in Proteobacte-
ria were also observed in association with changes of cover 
types from forest to grasslands in Hawai’i [118]. In addition, 
Enterobacteriaceae taxa have been associated with higher 
levels of Fusarium wilt disease of banana [119], but these 
taxa were also found in higher levels in asymptomatic Kauri 
trees compared to those infected with Phytophthora agath-
idicida [120]. Similar to our study, however, Byers et al. 
[120] found that Solirubrobacterales were more abundant 
with trees in decline. Przemieniecki et al. [121] surveyed 
bacterial communities associated A. ostoyae rhizomorphs 
during three stages of tree decline. They observed that rhizo-
morphs that were rich in Parabacteroides, Clostridium, and 
Bacillus were able to hydrolyze diverse organic compounds 
that could assist Armillaria rhizomorph enzymes in wood 
decomposition. Though these taxa were not present in our 
study, the high abundance of several taxa in the Proteobacte-
ria and Enterobacteriaceae suggests potential recruitment of 
bacterial taxa by A. solidipes to assist in wood degradation. 
Alternatively, these results could suggest that the abundance 
of these taxa may be associated with tree mortality and/or 
changes in the plant community due to the activity of A. 
solidipes. Furthermore, as the rhizosphere of the infected 
tree begins to degrade, these taxa may thrive because of their 
unique abilities to breakdown complex plant root materials. 
Several studies have observed changes in bacterial com-
munities associated with declines in plant communities 

[122–124]. More research is needed better understand 
signaling among members of the pathobiome during tree 
decline that could foster changes in the associated bacterial 
communities.

We identified several fungal taxa that were more signifi-
cantly more abundant in association with A. altimontana. 
Several of these taxa have been shown to increase plant 
productivity through multiple functions, such as ectomyc-
orrhizal fungi including Atheliaceae, Rhizopogonaceae, and 
Suillaceae [125–128]. Taxa from all three ectomycorrhizal 
fungal families were significantly more differentially abun-
dant in soils associated with A. altimontana compared to 
A. solidipes, allowing increased uptake of water and nutri-
ents to enhance tree defenses against root diseases [31]. The 
functions of these A. altimontana–associated soil fungi sug-
gest that these fungal communities may also contribute to 
the overall health of the forest stand, corroborating Warwell 
et al. [20], who found that trees associated with A. altimon-
tana were larger in both diameter and height than trees not 
associated with this Armillaria species. It remains unknown 
if A. altimontana is conducive to mycorrhizal fungi though 
evidence provided herein suggests that A. altimontana co-
occurs with mycorrhizal fungi.

Utilizing the naturally occurring soil fungal communi-
ties to assist in the management of Armillaria root disease 
may be key to long-term protection of residual trees on sites 
infested with pathogenic Armillaria spp., such as following 
Armillaria root disease–associated mortality or silvicul-
tural thinning practices. Beneficial microbes can minimize 
pathogen inoculum loads by reducing pathogen growth or 
inhibiting pathogen infection of susceptible hosts [41]. In 
this study, a greater diversity of mycorrhizal and saprophytic 
fungi was observed in association with the beneficial/non-
pathogenic A. altimontana, demonstrating that mycorrhizae 
may have a direct influence on hosts within forested environ-
ments associated with Armillaria species [125].

Selecting trees to sample Armillaria species was the 
greatest limiting factor in this study. More than 25 years 
before this study, A. solidipes was well represented on the 
site [20]. The small number of A. solidipes–infected trees in 
this study perhaps reflects the protective role of A. altimon-
tana and the associated microbial community in suppress-
ing A. solidipes; however, additional studies and surveys are 
needed to support this hypothesis. The survey approaches 
used in our study yielded rhizomorphs for 78% of the trees 
and adequate DNA from 90% of the samples. Additionally, 
the use of metatranscriptomics could further our under-
standing of the fungal microbes and their ecological func-
tions within the soils associated with A. altimontana and A. 
solidipes.

In conclusion, we found high similarity comparing the 
genomes of between the beneficial/non-pathogenic A. alti-
montana and pathogenic A. solidipes. The larger number 
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of proteins encoded within A. altimontana genome results 
from moderate increases across many different gene families 
instead of a large expansion of a few gene families. However, 
we found many relatively small differences in genes that 
could contribute to differences in ecological lifestyles and 
interactions with woody hosts and soil microbes (fungi and 
bacteria). We did observe, however, that soil microbial com-
munities may act in concert with A. altimontana to produce 
suppressive soils that help protect trees from Armillaria root 
disease, caused by A. solidipes. This study further suggests 
that novel approaches for managing Armillaria root disease 
could be based on management practices that favor naturally 
occurring, non-pathogenic Armillaria spp. and other ben-
eficial soil microbes that suppress Armillaria root disease. 
Additionally, continued observations of microbial commu-
nities in association Armillaria spp. will provide additional 
insights on microbial changes over time in relation with 
Armillaria root disease and changing forest environments.
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